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Abstract

The fundamental peculiarities of discrete diffraction in the two-dimensional waveguide arrays were studied. The discrete diffraction
properties of such arrays can be effectively altered, depending upon the input conditions. By slightly changing the input conditions, light
can experience normal diffraction in one-direction and experience anomalous diffraction in the other.
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Discrete waveguide arrays have become a topic of con-
siderable attention for many years. These periodic struc-
tures exhibit a wealth of phenomena that have no analog
in the continuous regime [1-4]. For example, due to the
periodic nature of waveguide arrays, their diffraction
behavior can be tailored depending on the propagation
k-vector within the Brillouin zone [3,4]. As a result, zero
or even reverse diffraction is possible in these waveguide
array structures. Discrete solitons are also known to exist
in such nonlinear array systems through the interplay of
linear coupling effects and material nonlinearity. Many
properties of optical discrete spatial solitons have been
systematically explored in theory and experiment, includ-
ing generalizations to diffraction management [3,5], and
diffraction-managed solitons [6].

The above mentioned studies have been limited primar-
ily to the one-dimensional waveguide arrays, but interest
has been stimulated in two-dimensional waveguide arrays
since the first experimental observation of discrete solitons
was achieved in one-dimensional AlGaAs waveguide
arrays [2]. This experimental observation stimulated much
new research, such as studies of solitons in two-dimen-
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sional photorefractive optical lattices in which localization
phenomena have been observed [7-9]. But the optically
induced lattices in photorefractives are limited to periodic
configurations and are not permanent. To overcome these
disadvantages, other methods to create two-dimensional
arrays are also being developed. These include arrays of
fiber bundles [10], and optically-written arrays in silica
[11]. This optically-written technique has provided highly
uniform linear arrays and holds much potential for the
observation of nonlinear effects as well [12]. It was demon-
strated that one can write optical waveguides along arbi-
trary paths by tightly focusing ultrashort laser pulses into
silica glass .With this technique the field energy is deposited
in the focal volume and a permanent refractive-index
increase is induced. Moving the sample with respect to
the focus of the beam can create low-loss optical wave-
guides and can fabricate two-dimensional waveguide
arrays with designed diffraction. In this letter, stimulated
by the idea of diffraction management in one-dimensional
waveguide arrays, we study the properties of discrete dif-
fraction in two-dimensional waveguide arrays environment
and we find that the diffraction behavior can be drastically
altered depending on the propagation k-vector within the
Brillouin zone. As will be shown, these structures possess
significantly more complex than their 1D counterpart.
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We begin with tracing diffraction in the homogenous
medium, we consider the propagation of scalar waves of
the form E(r) = Eqexp(ik -7) in a three-dimensional free
space, where k is the wave vector whose x, y and z compo-
nents are k, k, and k., respectively. The absolute value of

k is k =2mn/)y, and they are related by the condition

=K+ ki +k* or equivalently, k. = /k’ -kl — ki

When an optical field propagates over a distance L, each
transverse component of the frequency k., k, gains a phase
k(ky,ky)L, the initial profile of the beam along the x-,
y-directions broadens as the beam propagates due to the
phase accumulated by the different spatial frequencies. In
analogy with temporal dispersion, the spatial broadening
of the beam is related to D, = &%, / aki, D, = azkz/aki in
the x-, y-directions respectively. In homogeneous media,
D, and D, are always negative, implying that diffraction
in such media is equivalent to anomalous dispersion.

Let us now analyze the spatial broadening of a beam in
the discrete 2D waveguide arrays, considering two-dimen-
sional waveguide arrays are lossless and infinite and that
they are comprised of identical, regularly spaced wave-
guides. The distance between successive waveguides is d.
Fig. 1(a) depicts such two-dimensional waveguide struc-
ture. By using the formalism of coupled-mode theory and
by considering only the around waveguides coupling, it
can be shown that the electric field propagating in the
(n,m)th waveguide obeys the following equation

dEn,m
dz

= 1BE‘nm + icl (En+l,m + En—l,m + Enm—l + En,m-H)

+ iC’Z(EnJﬁl‘erl + En+1‘mfl + Enfl,mfl + Enfl,m+l)
+ | Enn|*Enm (1)

where f is the field propagation constant of each waveguide,
c1 and ¢, are the coupling coefficients of nearest-neighbor
and next-nearest-neighbor, which are proportional to an
overlap integral of the two modes of such waveguides.
Fig. 1(b) is the sketch drawing of coupling due to field over-
lap of such waveguides. The last term describes the nonlin-
ear Kerr effect, with a coefficient y. The nonlinear term is
significant only at high powers and can be ignored in the

Fig. 1. (a) Schematic drawing of the two-dimensional waveguides arrays.
(b) The sketch drawing of coupling due to field overlap of each waveguide
in 2D waveguide arrays.

low-intensity regime. This low-power linear solution de-
scribes discrete diffraction in the 2D array of waveguides.
When a single, or few, input guides are excited with low
optical power, light spreads over more and more wave-
guides as it propagates through discrete diffraction.

The linear spatial dispersive relation of two-dimensional
waveguide arrays can be obtained from Eq. (1) by assign-
ing to E,,, the form E,,, = Aexpl[i(k.z + k.x, + k,y,,)],
where x,, = nd, y,, = md. In this case, the linear dispersion
equation readily follows and is given by

k. = B+ 2ci(coskyd + cosk,d) + 4c; cos k.d cosk,d (2)

The dispersive character of the two-dimensional waveguide
arrays are evident when only one waveguide is initially ex-
cited, for example, Ey o = Ay and E,,,, = 0 for (n#0,m #0)
at z = 0. In order to study the properties of discrete diffrac-
tion, we define the discrete diffraction coefficients in the x-,
y-directions respectively as follow

ok,

D, = o —2¢1d” cos(ked) — 4crd* cos(k,d) cos(k.d) (3)
k. 5 5
=2 —2c1d” cos(kyd) — 4cod” cos(ked) cos(k,d) (4)
y

A Brillouin zone is formed in the range |k,d| <n and
|k,d| <m, any higher frequency has an equivalent inside
it. Especially, when we fix ¢; =0.284 mm !, ¢, =0.043

m~!' [13], from the Eqgs. (3) and (4), we can get the
domain of the sign of the diffraction, as it is depicted
in Fig. 2. D, and D, become positive in the range
/2 < |kyd| < m and n/2 <|k,d| < respectively, enabling
light beams to experience anomalous diffraction, i.e, of
opposite sign to that experienced in nature. In practice,
the sign and value of the diffraction can be controlled
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Fig. 2. The sign of the diffraction coefficients D, and D, in different
ranges. (I): D, <0 and D, <0. (II): D> 0 and D, > 0. (III): D, > 0 and
D, <0.(IV): D,<0and D, >0
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Fig. 3. Spatial intensity distribution for 2D waveguide arrays, when light is injected into the centre, with the maximal field magnitude E = 1; (a) spatial
intensity distribution of the initial injected beam at z =0 mm; (b) spatial intensity distribution for k.d =0, k,d =0 at z =8 mm; (c) spatial intensity
distribution for kd = n/2, k,d =0 at z =8 mm; (d) spatial intensity distribution for k.d = n/2, k, d =mn/2 at z =8 mm.

and manipulated by launching light at a particular angle or
equivalently by tilting the waveguide arrays. This in turn
allows the possibility of achieving a self-defocusing (with
positive Kerr coefficient) regime which leads to the forma-
tion of discrete dark solitons [4]. The tilted angle o and y
are related to the wave numbers k., k, by the relations
[3] sino = k,/k, siny = k,/k (a, y are the tilted angles of
the input beam in the x-, y-directions respectively). The an-
gles corresponded to various values 0 = k.d (or 0 = k,d) in
the range of O-m, if the input beam at a wavelength of
1.53 um and the linear refractive index n=1.5, d=16
um, then m equivalent to a tilt angle of «=sin'(0/kd)
~ 1.8° (or y =sin"'(0/kd) ~ 1.8°) under these condition.
Moreover we can see that D, and D, completely disappears
around these points k. = £3; and k, = £7; respectively.
Clearly, the sign and value of diffraction are determined
by three physical parameters, namely the period, the cou-
pling strength, and the tilted angle.

It is also fundamental to understand the diffractive
properties of these 2D discrete systems when broader
beams, exciting more than one waveguide element, are
involved. Under these circumstances the modal fields
within waveguide n, m are written in the form E,,, =
Uy, expli(k.z + kyx, + k,p,,)], Substituting this form into
Eq. (1) we obtain

ic1 [ttt m €XP(1kyd) + ty—1 m €Xp(—ikyid) + thy 1 €Xp(—ik,d)
+ Uty i1 €Xp(ik,d)] + ico i1 mr1 €Xp(iked + ik,d)
+ Uy w1 €Xp(iked — ikyd) + t1y1 oy €xp(—ik.d — 1k,d)
+ U1 m+1 Xp(—ik,d + ik,d)] — 1[2¢1 cos(k.d)
+ 2¢; cos(k,d) + 4c; cos(k.d) cos(k,d)uym

. 2 dun.m

+ 1/|un.m| un,m - dZ (5)
Notice that Eq. (5) is relation with k.d and k d, thus, in the
linear regime, the diffraction behavior of the array can be
tailored or altered, depending on the values of k,d and
kyd. It can be normal diffraction in one-direction and
anomalous diffraction in the other, depending on the tilted
angle. We carried out the simulations by exactly solving
Eq. (5) under linear conditions. Assuming that the 2D
waveguide arrays have the 27 x 27 structure, and the length
of each waveguide is 8 mm long, the input Gaussian beam
with wo =38 um excited mostly nine waveguides. Fig. 3
shows the peculiarities of discrete diffraction when a 2D
circular Gaussian beam is launched into the waveguide
with different values of k,d and kd corresponding to differ-
ent tilted angles. When the beam is normal injected into the
waveguide arrays with low optical power, light spreads
over more and more waveguides as it propagates through
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discrete diffraction, and the spatial intensity distribution is
central symmetry (see Fig. 3(b)). For k.d=m/2 and
kyd =0, where diffraction should vanish in the x-direction
and be the normal diffraction in the y-direction, we can see
from Fig. 3(c) that the output field along y-axis broadens
much larger than x-axis, it also exhibits an asymmetric
profile along x-direction, attributed to the remanent
third-order diffraction related to x. These results demon-
strate that the properties of discrete diffraction in the
two-dimensional waveguide arrays are more complex than
their 1D counterpart.

In conclusion, we have studied the discrete diffraction
behavior of two-dimensional waveguide arrays in theory.
Light can experience normal diffraction in one-direction
and experience anomalous diffraction in the other in these
waveguide array structures by slightly changing the input
conditions, for example, at different tilted angles.
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